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Motivation

 Our research is based on the results of computations
 Faster programs allow you to 

 Generate results quicker
 Test different ideas in less time
 Make more efficient use of your time

 Faster programs can be achieved by
 Optimisation (increasing the speed of the code)
 Parallelisation (using more computing power)

Why numerical issues are important
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Overview

 Timing and profiling
 Some optimisation issues
 Matrix-matrix multiplication
 Choosing the right BLAS/LAPACK library
 Why packed storage is bad (for performance)
 Shared memory parallelisation
 Distributed memory parallelisation
 Computing resources

Contents of the presentation
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Timing and profiling

 Only programs parts that require a lot of runtime need 
to be optimised

 omp_get_wtime() calls can be placed to identify 
slow program parts

 Profiling yields number of routine calls and time spent 
for executing routines, shows memory access 
problems

 Profiling usually requires unoptimised compilation and 
may thus lead to inaccurate numbers

Identifying computationally intensive program parts
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Numerical optimisation

 Compile with optimisations turned on (-O3 -xP on Intel 
systems, -O3 -xW on Cleopatra)

 Avoid if  in loops
 Compute constant expressions only once and store them
 Expensive operators are:

 trigonometric functions
 square roots
 exponentiation
 division

Some basic guidelines
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Numerical optimisation

 Memory access is a bottleneck
 Store even results of small computations in scalars 

when used repeatedly in a loop
 Computing something can be faster than retrieving it 

from memory

Minimise memory access

register L1 cache L2 cache RAM disk

cycles: 1 10 100 1000 10.000.000
memory: Bytes KBytes MBytes GBytes TBytes
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Numerical optimisation

 Constant expressions should be computed only once
 Exponentiation is expensive, can be computed 

recursively:

Series computations
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Matrix-matrix multiplication

 dual-core Pentium D, 
Intel FC 10.1

 vectorisation is fast     
(-O3 -xP)

 matmul() is very slow!
 reference BLAS is slow
 MKL is fast and 

parallelised
 BLAS can use DSYRK 

for N=A'A (50% faster)
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8 – DGEMM MKL 2 threads
7 – DGEMM MKL 1 thread
6 – DGEMM reference BLAS
5 – matmul()
4 – triple loop -O3 -xP -parallel
3 – triple loop -O3 -xP
2 – triple loop -O2
1 – triple loop -O0

Runtime comparison
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Choosing the right BLAS/LAPACK lib

 Reference BLAS is 
slow!

 Goto BLAS or vendor-
specific libraries 
should be used – 
optimised and 
parallelised

 LAPACK performance 
is governed by BLAS 
performance

Multithreaded DGEMM performance [GFLOPS]

Multithreaded DPOSV runtimes [s]
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Why packed storage is bad

 Cholesky factorisation of 10201x10201 matrix
 Cleopatra, 4 threads
 Goto BLAS + LAPACK
 Unpacked: DPOTRF, 26.7 s
 Packed: DPPTRF, 631 s
 Packed storage offers less than 50% memory benefit, 

but is more than 20 times slower
 Avoid packed storage when runtime is important!

Packed storage LAPACK routines are slow
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Parallelisation

 Gigahertz-race has stopped
 Further developments aim at increasing the number of 

“cores” per CPU
 Parallel programming is required to make use of these 

parallel computer architectures
 Good parallel programming almost eliminates memory 

and computational restrictions

Why parallelisation is necessary
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Parallel computer architectures

 Easy to program, fast
 Expensive, limited maximum size

Shared memory



November 17, 2008 13

Parallel computer architectures

 Almost unlimited maximum size
 More difficult to program, slow if lots of 

communication is required

Distributed memory
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Parallel computer architectures

 Hybrid architecture, can be built from cheap components
 Similar benefits and limitations as distributed mem 

systems

Clusters
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Shared memory parallelisation

 OpenMP is used to parallelise loops
 Needs to be supported by the compiler
 Very easy to use

OpenMP

!$omp parallel do
do i=1,n
  A(i) = f(i)
end do
!$omp end parallel do

 Load balancing is done by operating system
 Memory-intensive programs might not benefit
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Distributed memory parallelisation

 MPI is used for explicitly exchanging data between 
processes

MPI

do i=myrank+1,n,nprocs
  A(i) = f(i)
end do
call mpi_allreduce(A,...)

 No automatic load balancing
 Performance is dependent on communications network
 Communication should be kept to a minimum
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Distributed memory parallelisation

 ACML, MKL, Goto BLAS & LAPACK routines are 
parallelised for shared memory only

 ScaLAPACK contains efficient distributed-memory 
routines of BLAS and LAPACK functionality

 Matrices are distributed among processes, full system 
memory can be used

 Uses MPI for communication:
 Performance is dependent on network
 Communication should be kept to a minimum

 Relatively complicated to use

ScaLAPACK
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Computing resources

 33 nodes
 4 Opteron 280 nodes, 2.4 GHz
 32 nodes with 8 GB RAM, 1 node 

with 16 GB RAM
 272 GB total RAM
 Infiniband network
 633 GFLOPS peak performance
 exclusively available to our group

Cleopatra
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Computing resources

 104 nodes
 32 Power 6 cores, 4.7 GHz
 83 nodes with 128 GB RAM, 18 

nodes with 256 GB RAM
 15.6 TB total RAM
 Infiniband network
 60 TFLOPS peak performance
 limited CPU time budget!

Huygens 2
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Conclusions

 Compile with -O3 -Xp / -O3 -Xw
 Memory access is slow
 Small optimisations can speed up your code 

significantly
 Use BLAS and LAPACK routines for linear algebra
 Use ACML, MKL or Goto implementations
 Don't use packed storage for runtime-critical code
 Don't use Matlab for runtime-critical code
 Parallelise when necessary

Things to remember


