
November 17, 2008

1

Numerical optimisation and
parallelisation
How to speed up your code

PSG group meeting

Tobias Wittwer

Delft Institute of Earth Observation and Space Systems

November 17, 2008 2

Motivation

 Our research is based on the results of computations
 Faster programs allow you to

 Generate results quicker
 Test different ideas in less time
 Make more efficient use of your time

 Faster programs can be achieved by
 Optimisation (increasing the speed of the code)
 Parallelisation (using more computing power)

Why numerical issues are important

November 17, 2008 3

Overview

 Timing and profiling
 Some optimisation issues
 Matrix-matrix multiplication
 Choosing the right BLAS/LAPACK library
 Why packed storage is bad (for performance)
 Shared memory parallelisation
 Distributed memory parallelisation
 Computing resources

Contents of the presentation

November 17, 2008 4

Timing and profiling

 Only programs parts that require a lot of runtime need
to be optimised

 omp_get_wtime() calls can be placed to identify
slow program parts

 Profiling yields number of routine calls and time spent
for executing routines, shows memory access
problems

 Profiling usually requires unoptimised compilation and
may thus lead to inaccurate numbers

Identifying computationally intensive program parts

November 17, 2008 5

Numerical optimisation

 Compile with optimisations turned on (-O3 -xP on Intel
systems, -O3 -xW on Cleopatra)

 Avoid if in loops
 Compute constant expressions only once and store them
 Expensive operators are:

 trigonometric functions
 square roots
 exponentiation
 division

Some basic guidelines

November 17, 2008 6

Numerical optimisation

 Memory access is a bottleneck
 Store even results of small computations in scalars

when used repeatedly in a loop
 Computing something can be faster than retrieving it

from memory

Minimise memory access

register L1 cache L2 cache RAM disk

cycles: 1 10 100 1000 10.000.000
memory: Bytes KBytes MBytes GBytes TBytes

November 17, 2008 7

Numerical optimisation

 Constant expressions should be computed only once
 Exponentiation is expensive, can be computed

recursively:

Series computations

 x =∑l

2l1
4 Rr

l

 x , l

 Rr
l

= Rr
l−1

 Rr

November 17, 2008 8

Matrix-matrix multiplication

 dual-core Pentium D,
Intel FC 10.1

 vectorisation is fast
(-O3 -xP)

 matmul() is very slow!
 reference BLAS is slow
 MKL is fast and

parallelised
 BLAS can use DSYRK

for N=A'A (50% faster)

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

wall t ime [s]

8227 s

4336 s

82.7 s
77.6 s

4403 s

174.4 s

40.6 s
21.5 s

8 – DGEMM MKL 2 threads
7 – DGEMM MKL 1 thread
6 – DGEMM reference BLAS
5 – matmul()
4 – triple loop -O3 -xP -parallel
3 – triple loop -O3 -xP
2 – triple loop -O2
1 – triple loop -O0

Runtime comparison

November 17, 2008 9

Choosing the right BLAS/LAPACK lib

 Reference BLAS is
slow!

 Goto BLAS or vendor-
specific libraries
should be used –
optimised and
parallelised

 LAPACK performance
is governed by BLAS
performance

Multithreaded DGEMM performance [GFLOPS]

Multithreaded DPOSV runtimes [s]

November 17, 2008 10

Why packed storage is bad

 Cholesky factorisation of 10201x10201 matrix
 Cleopatra, 4 threads
 Goto BLAS + LAPACK
 Unpacked: DPOTRF, 26.7 s
 Packed: DPPTRF, 631 s
 Packed storage offers less than 50% memory benefit,

but is more than 20 times slower
 Avoid packed storage when runtime is important!

Packed storage LAPACK routines are slow

November 17, 2008 11

Parallelisation

 Gigahertz-race has stopped
 Further developments aim at increasing the number of

“cores” per CPU
 Parallel programming is required to make use of these

parallel computer architectures
 Good parallel programming almost eliminates memory

and computational restrictions

Why parallelisation is necessary

November 17, 2008 12

Parallel computer architectures

 Easy to program, fast
 Expensive, limited maximum size

Shared memory

November 17, 2008 13

Parallel computer architectures

 Almost unlimited maximum size
 More difficult to program, slow if lots of

communication is required

Distributed memory

November 17, 2008 14

Parallel computer architectures

 Hybrid architecture, can be built from cheap components
 Similar benefits and limitations as distributed mem

systems

Clusters

November 17, 2008 15

Shared memory parallelisation

 OpenMP is used to parallelise loops
 Needs to be supported by the compiler
 Very easy to use

OpenMP

!$omp parallel do
do i=1,n
 A(i) = f(i)
end do
!$omp end parallel do

 Load balancing is done by operating system
 Memory-intensive programs might not benefit

November 17, 2008 16

Distributed memory parallelisation

 MPI is used for explicitly exchanging data between
processes

MPI

do i=myrank+1,n,nprocs
 A(i) = f(i)
end do
call mpi_allreduce(A,...)

 No automatic load balancing
 Performance is dependent on communications network
 Communication should be kept to a minimum

November 17, 2008 17

Distributed memory parallelisation

 ACML, MKL, Goto BLAS & LAPACK routines are
parallelised for shared memory only

 ScaLAPACK contains efficient distributed-memory
routines of BLAS and LAPACK functionality

 Matrices are distributed among processes, full system
memory can be used

 Uses MPI for communication:
 Performance is dependent on network
 Communication should be kept to a minimum

 Relatively complicated to use

ScaLAPACK

November 17, 2008 18

Computing resources

 33 nodes
 4 Opteron 280 nodes, 2.4 GHz
 32 nodes with 8 GB RAM, 1 node

with 16 GB RAM
 272 GB total RAM
 Infiniband network
 633 GFLOPS peak performance
 exclusively available to our group

Cleopatra

November 17, 2008 19

Computing resources

 104 nodes
 32 Power 6 cores, 4.7 GHz
 83 nodes with 128 GB RAM, 18

nodes with 256 GB RAM
 15.6 TB total RAM
 Infiniband network
 60 TFLOPS peak performance
 limited CPU time budget!

Huygens 2

November 17, 2008 20

Conclusions

 Compile with -O3 -Xp / -O3 -Xw
 Memory access is slow
 Small optimisations can speed up your code

significantly
 Use BLAS and LAPACK routines for linear algebra
 Use ACML, MKL or Goto implementations
 Don't use packed storage for runtime-critical code
 Don't use Matlab for runtime-critical code
 Parallelise when necessary

Things to remember

