
November 17, 2008

1

Numerical optimisation and
parallelisation
How to speed up your code

PSG group meeting

Tobias Wittwer

Delft Institute of Earth Observation and Space Systems

November 17, 2008 2

Motivation

 Our research is based on the results of computations
 Faster programs allow you to

 Generate results quicker
 Test different ideas in less time
 Make more efficient use of your time

 Faster programs can be achieved by
 Optimisation (increasing the speed of the code)
 Parallelisation (using more computing power)

Why numerical issues are important

November 17, 2008 3

Overview

 Timing and profiling
 Some optimisation issues
 Matrix-matrix multiplication
 Choosing the right BLAS/LAPACK library
 Why packed storage is bad (for performance)
 Shared memory parallelisation
 Distributed memory parallelisation
 Computing resources

Contents of the presentation

November 17, 2008 4

Timing and profiling

 Only programs parts that require a lot of runtime need
to be optimised

 omp_get_wtime() calls can be placed to identify
slow program parts

 Profiling yields number of routine calls and time spent
for executing routines, shows memory access
problems

 Profiling usually requires unoptimised compilation and
may thus lead to inaccurate numbers

Identifying computationally intensive program parts

November 17, 2008 5

Numerical optimisation

 Compile with optimisations turned on (-O3 -xP on Intel
systems, -O3 -xW on Cleopatra)

 Avoid if in loops
 Compute constant expressions only once and store them
 Expensive operators are:

 trigonometric functions
 square roots
 exponentiation
 division

Some basic guidelines

November 17, 2008 6

Numerical optimisation

 Memory access is a bottleneck
 Store even results of small computations in scalars

when used repeatedly in a loop
 Computing something can be faster than retrieving it

from memory

Minimise memory access

register L1 cache L2 cache RAM disk

cycles: 1 10 100 1000 10.000.000
memory: Bytes KBytes MBytes GBytes TBytes

November 17, 2008 7

Numerical optimisation

 Constant expressions should be computed only once
 Exponentiation is expensive, can be computed

recursively:

Series computations

 x =∑l

2l1
4  Rr 

l

 x , l 

 Rr 
l

= Rr 
l−1

 Rr 

November 17, 2008 8

Matrix-matrix multiplication

 dual-core Pentium D,
Intel FC 10.1

 vectorisation is fast
(-O3 -xP)

 matmul() is very slow!
 reference BLAS is slow
 MKL is fast and

parallelised
 BLAS can use DSYRK

for N=A'A (50% faster)

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

wall t ime [s]

8227 s

4336 s

82.7 s
77.6 s

4403 s

174.4 s

40.6 s
21.5 s

8 – DGEMM MKL 2 threads
7 – DGEMM MKL 1 thread
6 – DGEMM reference BLAS
5 – matmul()
4 – triple loop -O3 -xP -parallel
3 – triple loop -O3 -xP
2 – triple loop -O2
1 – triple loop -O0

Runtime comparison

November 17, 2008 9

Choosing the right BLAS/LAPACK lib

 Reference BLAS is
slow!

 Goto BLAS or vendor-
specific libraries
should be used –
optimised and
parallelised

 LAPACK performance
is governed by BLAS
performance

Multithreaded DGEMM performance [GFLOPS]

Multithreaded DPOSV runtimes [s]

November 17, 2008 10

Why packed storage is bad

 Cholesky factorisation of 10201x10201 matrix
 Cleopatra, 4 threads
 Goto BLAS + LAPACK
 Unpacked: DPOTRF, 26.7 s
 Packed: DPPTRF, 631 s
 Packed storage offers less than 50% memory benefit,

but is more than 20 times slower
 Avoid packed storage when runtime is important!

Packed storage LAPACK routines are slow

November 17, 2008 11

Parallelisation

 Gigahertz-race has stopped
 Further developments aim at increasing the number of

“cores” per CPU
 Parallel programming is required to make use of these

parallel computer architectures
 Good parallel programming almost eliminates memory

and computational restrictions

Why parallelisation is necessary

November 17, 2008 12

Parallel computer architectures

 Easy to program, fast
 Expensive, limited maximum size

Shared memory

November 17, 2008 13

Parallel computer architectures

 Almost unlimited maximum size
 More difficult to program, slow if lots of

communication is required

Distributed memory

November 17, 2008 14

Parallel computer architectures

 Hybrid architecture, can be built from cheap components
 Similar benefits and limitations as distributed mem

systems

Clusters

November 17, 2008 15

Shared memory parallelisation

 OpenMP is used to parallelise loops
 Needs to be supported by the compiler
 Very easy to use

OpenMP

!$omp parallel do
do i=1,n
 A(i) = f(i)
end do
!$omp end parallel do

 Load balancing is done by operating system
 Memory-intensive programs might not benefit

November 17, 2008 16

Distributed memory parallelisation

 MPI is used for explicitly exchanging data between
processes

MPI

do i=myrank+1,n,nprocs
 A(i) = f(i)
end do
call mpi_allreduce(A,...)

 No automatic load balancing
 Performance is dependent on communications network
 Communication should be kept to a minimum

November 17, 2008 17

Distributed memory parallelisation

 ACML, MKL, Goto BLAS & LAPACK routines are
parallelised for shared memory only

 ScaLAPACK contains efficient distributed-memory
routines of BLAS and LAPACK functionality

 Matrices are distributed among processes, full system
memory can be used

 Uses MPI for communication:
 Performance is dependent on network
 Communication should be kept to a minimum

 Relatively complicated to use

ScaLAPACK

November 17, 2008 18

Computing resources

 33 nodes
 4 Opteron 280 nodes, 2.4 GHz
 32 nodes with 8 GB RAM, 1 node

with 16 GB RAM
 272 GB total RAM
 Infiniband network
 633 GFLOPS peak performance
 exclusively available to our group

Cleopatra

November 17, 2008 19

Computing resources

 104 nodes
 32 Power 6 cores, 4.7 GHz
 83 nodes with 128 GB RAM, 18

nodes with 256 GB RAM
 15.6 TB total RAM
 Infiniband network
 60 TFLOPS peak performance
 limited CPU time budget!

Huygens 2

November 17, 2008 20

Conclusions

 Compile with -O3 -Xp / -O3 -Xw
 Memory access is slow
 Small optimisations can speed up your code

significantly
 Use BLAS and LAPACK routines for linear algebra
 Use ACML, MKL or Goto implementations
 Don't use packed storage for runtime-critical code
 Don't use Matlab for runtime-critical code
 Parallelise when necessary

Things to remember

