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Foreword

Any computer user knows the craving for more computing power. It was this “need for speed”
that made me choose high performance computing as subject of my master thesis. This gave me
the opportunity to work with systems at Stuttgart’s high performance computing center, HLRS.
I spent five months parallelising programs for gravity field modelling using OpenMP and MPI,
and testing them on a Cray Opteron cluster, NEC TX-7, and NEC SX-6.

After graduating I moved to the Netherlands for my PhD research in the Physical and Space
Geodesy Group of the Delft Institute of Earth Observation and Space System, at the faculty of
Aerospace Engineering of the Delft University of Technology. My research topic, regional grav-
ity field modelling, proved to be computationally intensive. Luckily, we had access to Teras and
Aster, two supercomputers at the SARA supercomputing facility in Amsterdam. My programs
were quickly parallelised, shortening program runs from hours to minutes.

Seeing my colleagues struggle with the limited power of their PCs gave me the idea of writing a
tutorial about parallel programming, to give everyone the opportunity to easily parallelise her or
his programs. More urge was added when our group decided to buy its own Linux cluster.Now
all I needed was an example program - and when I had to write a program for spherical harmonic
analysis to check some results, I had this as well.

A week of coding and writing ensued. Test computations, creating graphics, proofreading, and
finetuning followed. My supervisor Prof. Dr.-Ing. Roland Klees reviewed the document and
gave his approval. I hope that the finished product will be useful to the reader, and as enjoyable
to read as it was to write.

Tobias Wittwer, Delft, November 2006
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Chapter 1

Introduction

1.1 Goal

Many scientific computations require a considerable amount of computing time. This computing
time can be reduced by distributing a problem over several processors. Multiprocessor computers
used to be quite expensive, and not everybody had access to them. Since 2005, x86-compatible
CPUs designed for desktop computers are available with two “cores”, which essentially makes
them dualprocessor systems. More cores per CPU are to follow.

This cheap extra computing power has to be used efficiently, which requires parallel program-
ming. Parallel programming methods that work on dual-core PCs also work on larger shared
memory systems, and a program designed for a cluster or other type of distributed memory sys-
tem will also perform well on your dual-core (or multi-core) PC.

The goal of this tutorial is to give an introduction into all aspects of parallel programming that
are necessary to write your own parallel programs. To achieve this, it explains

• the various existing architectures of parallel computers,

• the software needed for parallel programming, and how to install and configure it,

• how to analyse software and find the points were parallelisation might be helpful,

• how to write parallel programs for shared memory computers using OpenMP,

• how to write parallel programs for distributed memory computers using MPI and ScaLA-
PACK.

This tutorial aims mainly at writing parallel programs for solving linear equation systems. I hope
that it is also useful to give some help for parallelising programs for other applications.

1



2 CHAPTER 1. INTRODUCTION

1.2 Prerequisites

This introduction to parallel programming assumes that you

• work under Linux, as it is the most common platform for high performance computing,

• use the Intel ifort or GNU gfortran Fortran compiler, as these are freely available
(Intel only for non-commercial purposes) OpenMP-capable compilers.

This tutorial should also be useful for people using different system configurations and/or pro-
gramming languages. All the examples use above mentioned configuration, but can easily be
adapted to other configurations. The example programs are written in Fortran, but should also be
understandable for C programmers. OpenMP and MPI work very similar in C/C++, with only a
slightly different syntax (#OMP PARALLEL FOR instead of !$OMP PARALLEL DO, differ-
ent argument types). For ScaLAPACK programming, I recommend using Fortran, as ScaLA-
PACK can be a little awkward to use with C/C++.

1.3 Example Program

The example program SHALE implements spherical harmonical analysis (SHA) using least-
squares estimation of the spherical harmonic coefficients. I consider SHA to be well suited as an
example, as it is quite simple and understandable, can be run in various problem sizes, and offers
several starting points for parallel implementation. The functional model can easily be exchanged
for other functional models, making SHALE a good example for your own parallelised parameter
estimation programs.

All versions of SHALE described in this tutorial are available from the author’s website, http:
//www.lr.tudelft.nl/psg→ Staff → Tobias Wittwer → personal homepage.

http://www.lr.tudelft.nl/psg


Chapter 2

System Architectures

A system for the categorisation of the system architectures of computers was introduced by Flynn
(1972). It is still valid today and cited in every book about parallel computing. It will also be
presented here, expanded by a description of the architectures actually in use today.

2.1 Single Instruction - Single Data (SISD)

The most simple type of computer performs one instruction (such as reading from memory,
addition of two values) per cycle, with only one set of data or operand (in case of the examples a
memory address or a pair of numbers). Such a system is called a scalar computer.

load

instruction

save

result

load

value 1

load

value 2

add

values

Figure 2.1: Summation of two numbers

Figure 2.1 shows, in a simplified manner, the summation of two numbers in a scalar computer.
As a scalar computer performs only one instruction per cycle, five cycles are needed to complete
the task - only one of them dedicated to the actual addition. To add n pairs of numbers, n · 5
cycles would be required. To make matters even worse, in reality each of the steps shown in
figure 2.1 is actually composed of several sub-steps, increasing the number of cycles required for
one summation even more.

The solution to this inefficient use of processing power is pipelining. If there is one functional
unit available for each of the five steps required, the addition still requires five cycles. The

3



4 CHAPTER 2. SYSTEM ARCHITECTURES

advantage is that with all functional units being busy at the same time, one result is produced
every cycle. For the summation of n pairs of numbers, only (n−1)+5 cycles are then required.
Figure 2.2 shows the summation in a pipeline.
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time
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te
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Figure 2.2: Summation of two numbers in a pipeline

As the execution of instructions usually takes more than five steps, pipelines are made longer
in real processors. Long pipelines are also a prerequisite for achieving high CPU clock speeds.
These long pipelines generate a new problem. If there is a branching event (such as due to an
if -statements), the pipeline has to be emptied and filled again, and there is a number of cycles
equal to the pipeline length until results are again delivered. To circumvent this, the number of
branches should be kept small (avoiding and/or smart placement of if -statements). Compilers
and CPUs also try to minimise this problem by “guessing” the outcome (branch prediction).

The power of a processor can be increased by combining several pipelines. This is then called
a superscalar processor. Fixed-point and logical calculations (performed in the ALU - Arith-
metic/Logical Unit) are usually separated from floating-point math (done by the FPU - Floating
Point Unit). The FPU is commonly subdivided in a unit for addition and one for multiplication.
These units may be present several times, and some processors have additional functional units
for division and the computation of square roots.
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To actually gain a benefit from having several pipelines, these have to be used at the same time.
Parallelisation is necessary to achieve this.

2.2 Single Instruction - Multiple Data (SIMD)

The scalar computer of the previous section performs one instruction on one data set only. With
numerical computations, we often handle larger data sets on which the same operation (the same
instruction) has to be performed. A computer that performs one instruction on several data sets
is called a vector computer.

Vector computers work just like the pipelined scalar computer of figure 2.2. The difference is
that instead of processing single values, vectors of data are processed in one cycle. The number
of values in a vector is limited by the CPU design. A vector processor than can simultaneously
work with 64 vector elements can also generate 64 results per cycle - quite an improvement over
the scalar processor from the previous section, which would require at least 64 cycles for this.

To actually use the theoretically possible performance of a vector computer, the calculations
themselves need to be vectorised. If a vector processor is fed with single values only, it cannot
perform decently. Just like with a scalar computer, the pipelines need to be kept filled.

Vector computers used to be very common in the field of high performance computing, as they al-
lowed very high performance even at lower CPU clock speeds. In the last years, they have begun
to slowly disappear. Vector processors are very complex and thus expensive, and perform poorly
with non-vectorisable problems. Today’s scalar processors are much cheaper and achieve higher
CPU clock speeds. Vectorisation is not dead, though. With the Pentium III, Intel introduced SSE
(Streaming SIMD Extensions), which is a set of vector instructions. In certain applications, such
as video encoding, the use of these vector instructions can offer quite impressive performance
increases. More vector instructions were added with SSE2 (Pentium 4) and SSE3 (Pentium 4
Prescott).

2.3 Multiple Instruction - Multiple Data (MIMD)

Up to this point, we only considered systems that process just one instruction per cycle. This
applies to all computers containing only one processing core (with multi-core CPUs, single-CPU
systems can have more than one processing core, making them MIMD systems). Combining
several processing cores or processors (no matter if scalar or vector processors) yields a computer
that can process several instructions and data sets per cycle. All high performance computers
belong to this category, and with the advent of multi-core CPUs, soon all computers will. MIMD
systems can be further subdivided, mostly based on their memory architecture.
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2.4 Shared Memory

In MIMD systems with shared memory (SM-MIMD), all processors are connected to a common
memory (RAM - Random Access Memory), as shown in figure 2.3. Usually all processors are
identical and have equal memory access. This is called symmetric multiprocessing (SMP).

CPU

RAMRAM RAM RAM

CPU CPU CPU

connection

Figure 2.3: Structure of a shared memory system

The connection between processors and memory is of predominant importance. Figure 2.4 shows
a shared memory system with a bus connection. The advantage of a bus is its expandability. A
huge disadvantage is that all processors have to share the bandwidth provided by the bus, even
when accessing different memory modules. Bus systems can be found in desktop systems and
small servers (frontside bus).

CPU

RAMRAM RAM RAM

CPU CPU CPU

Figure 2.4: Shared memory system with bus

To circumvent the problem of limited memory bandwidth, direct connections from each CPU to
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each memory module are desired. This can be achieved by using a crossbar switch (figure 2.5).
Crossbar switches can be found in high performance computers and some workstations.

CPU

RAMRAM RAM RAM

CPU CPU CPU

Figure 2.5: Shared memory system with crossbar switch

The problem with crossbar switches is their high complexity when many connections need to
be made. This problem can be weakened by using multi-stage crossbar switches, which in turn
leads to longer communication times. For this reason, the number of CPUs and memory modules
than can be connected by crossbar switches is limited.

The big advantage of shared memory systems is that all processors can make use of the whole
memory. This makes them easy to program and efficient to use. The limiting factor to their
performance is the number of processors and memory modules that can be connected to each
other. Due to this, shared memory-systems usually consist of rather few processors.

2.5 Distributed Memory

As could be seen in the previous section, the number of processors and memory modules cannot
be increased arbitrarily in the case of a shared memory system. Another way to build a MIMD-
system is distributed memory (DM-MIMD).

Each processor has its own local memory. The processors are connected to each other (figure
2.6). The demands imposed on the communication network are lower than in the case of a shared
memory system, as the communication between processors may be slower than the communica-
tion between processor and memory.
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RAMRAM RAM RAM

connection

CPU CPU CPU CPU

Figure 2.6: Structure of a distributed memory system

Distributed memory systems can be hugely expanded. Several thousand processors are not un-
common, this is called massively parallel processing (MPP). To actually use the theoretical per-
formance, much more programming effort than with shared memory systems is required. The
problem has to be subdivided into parts that require little communication. The processors can
only access their own memory. Should they require data from the memory of another processor,
then these data have to be copied. Due to the relatively slow communications network between
the processors, this should be avoided as much as possible.

2.6 ccNUMA

The two previous sections showed that shared memory systems suffer from a limited system size,
while distributed memory systems suffer from the arduous communication between the memo-
ries of the processors. A compromise is the ccNUMA (cache coherent non-uniform memory
access) architecture.

A ccNUMA system (figure 2.7) basically consists of several SMP systems. These are connected
to each other by means of a fast communications network, often crossbar switches. Access to the
whole, distributed or non-unified memory is possible via a common cache.

A ccNUMA system is as easy to use as a true shared memory system, at the same time it is much
easier to expand. To achieve optimal performance, it has to be made sure that local memory
is used, and not the memory of the other modules, which is only accessible via the slow com-
munications network. The modular structure is another big advantage of this architecture. Most
ccNUMA system consist of modules that can be plugged together to get systems of various sizes.
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    cache

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

RAM

CPU CPU

CPU CPU

Figure 2.7: Structure of a ccNUMA system

2.7 Cluster

For some years now clusters are very popular in the high performance computing community.
A cluster consists of several cheap computers (nodes) linked together. The simplest case is the
combination of several desktop computers - known as a network of workstations (NOW). Most
of the time, SMP systems (usually dual-CPU system with Intel or AMD CPUs) are used because
of their good value for money. They form hybrid systems. The nodes, which are themselves
shared memory systems, form a distributed memory system (figure 2.8).

The nodes are connected via a fast network, usually Myrinet or Infiniband. Gigabit Ethernet has
approximately the same bandwidth of about 100 MB/s and is a lot cheaper, but the latency (travel
time of a data package) is much higher. It is about 100 ms for Gigabit Ethernet compared to only
10 - 20 ms for Myrinet. Even this is a lot of time. At a clock speed of 2 GHz, one cycle takes 0.5



10 CHAPTER 2. SYSTEM ARCHITECTURES

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

RAMCPU CPU

network

Figure 2.8: Structure of a cluster of SMP nodes

ns. A latency of 10 ms amounts to 20,000 cycles of travel time before the data package reaches
its target.

Clusters offer lots of computing power for little money. It is not that easy to actually use the
power. Communication between the nodes is slow, and as with conventional distributed mem-
ory systems, each node can only access its local memory directly. The mostly employed PC
architecture also limits the amount of memory per node. 32 bit systems cannot address more
than 4 GB of RAM, and x86-64 systems are limited by the number of memory slots, the size
of the available memory modules, and the chip sets. Despite these disadvantages, clusters are
very successful and have given traditional, more expensive distributed memory systems a hard
time. They are ideally suited to problems with a high degree of parallelism, and their modularity
makes it easy to upgrade them.

In recent years, the cluster idea has been expanded to connecting computers all over the world
via the internet. This makes it possible to aggregate enormous computing power. Such a widely
distributed system is known as a grid.

2.8 Multiple Instruction - Single Data (MISD)

The attentive reader may have noticed that one system architecture is missing: Multiple Instruc-
tion - Single Data (MISD). Such a computer is neither theoretically nor practically possible in a
sensible way. Openshaw et al. (1999) write: “We found it hard to figure out why you would want
to do this (the simultaneous manipulation of one data set with several operations) unless you are
a computer scientist interested in weird computing! It is a highly specialised and seemingly a
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very restrictive form of parallelism that is often impractical, not to mention useless, as the basis
for a general-purpose machine.”

2.9 Some Examples

This section presents a few common multiprocessor/multi-core architectures. A much more
extensive and detailed description is given in the “Overview of recent supercomputers”, which is
updated once a year, and available on-line at http://www.phys.uu.nl/~euroben/.

Twice a year, a list of the 500 fastest computers in the world is published. The ranking is based
on the LINPACK benchmark. Although this is an old benchmark with little practical reference,
the Top 500 list gives a good overview of the fastest computers and the development of super-
computers. The list can be viewed on-line at http://www.top500.org.

2.9.1 Intel Pentium D

The Intel Pentium D was introduced in 2005. It is Intel’s first dual-core processor. It integrates
two cores, based on the NetBurst design of the Pentium 4, on one chip. The cores have their own
caches and access the common memory via the frontside bus. This limits memory bandwidth
and slows the system down in the case of memory-intensive computations. The Pentium D’s
long pipelines allow for high clock frequencies (at the time of writing up to 3.73 GHz with the
Pentium D 965), but may cause poor performance in the case of branches. The Pentium D is not
dual-CPU-capable. This capability is reserved for the rather expensive Xeon CPU. The Pentium
D supports SSE3 and x86-64 (the 64bit-extension of the x86 instruction set).

2.9.2 Intel Core 2 Duo

Intel’s successor to the Pentium D is similar in design to the popular Pentium M design, which
in turn is based on the Pentium III, with ancestry reaching back to the Pentium Pro. It abandons
high clock frequencies in the favour of more efficient computation. Like the Pentium D, it uses
the frontside bus for memory access by both CPUs. The Core 2 Duo supports SSE3 and x86-64.

2.9.3 AMD Athlon 64 X2 & Opteron

AMD’s dual-core CPUs Athlon 64 X2 (single-CPU only) and Opteron (depending on model
up to 8 CPUs in one system possible) are very popular CPUs for Linux clusters. They offer
goodt performance at affordable prices and reasonable power consumption. Each core has its

http://www.phys.uu.nl/~euroben/
http://www.top500.org
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own HyperTransport channel for memory access, making these CPUs well suited for memory-
intensive applications. They also support SSE3 and x86-64.

2.9.4 IBM pSeries

The pSeries is IBM’s server- and workstation line based on the POWER processor. The newer
POWER processors are multi-core designs and feature large caches. IBM builds shared mem-
ory systems with up to 32 CPUs. One large pSeries installation is the JUMP cluster at Kern-
forschungszentrum Jülich, Germany (http://jumpdoc.fz-juelich.de).

2.9.5 IBM BlueGene

BlueGene is an MPP (massively parallel processing) architecture by IBM. It uses rather slow
700 MHz PowerPC processors. These processors form very large, highly integrated distributed
memory systems, with fast communication networks (a 3D-Torus, like the Cray T3E). At the time
of writing, position one and three of the Top 500 list were occupied by BlueGene systems. The
fastest system, BlueGene/L (http://www.llnl.gov/asc/computing_resources/
bluegenel/), consists of 131,072 CPUs, and delivers a performance of up to 360 TeraFLOPS.

2.9.6 NEC SX-8

The NEC SX-8 is the one of the few vector supercomputers in production at the moment. It
performs vector operations at a speed of 2 GHz, with eight operations per clock cycle. One SX-8
node consists of eight CPUs, up to 512 nodes can be connected. The biggest SX-8 installation is,
at the time of writing, the 72-node system at Höchstleistungsrechenzentrum Stuttgart (HLRS),
Germany.

2.9.7 Cray XT3

Cray is the most famous name in supercomputing. Many of its designs were known not only for
their performance, but also for their design. The Cray XT3 is a massively-parallel system using
AMD’s Opteron CPU. The biggest installation of an XT3 is “Red Storm” at Sandia National
Laboratories (http://www.sandia.gov/ASC/redstorm.html) with 26,544 dual-core
Opteron CPUs, good for a performance of more than 100 TFLOPS and the second position in
the November 2006 Top 500 list.

http://jumpdoc.fz-juelich.de
http://www.llnl.gov/asc/computing_resources/bluegenel
http://www.sandia.gov/ASC/redstorm.html
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2.9.8 SGI Altix 3700

The SGI Altix 3700 is a ccNUMA system using Intel’s Itanium 2 processor. The Itanium 2 has
large caches and good floating point performance. Being ccNUMA, the Altix 3700 is easy to pro-
gram. Aster at SARA, Amsterdam, the Netherlands (http://www.sara.nl/userinfo/
aster/description/index.html) is an Altix 3700 with 416 CPUs.

http://www.sara.nl/userinfo/aster/description/index.html




Chapter 3

Software

3.1 Compiler

3.1.1 OpenMP

OpenMP (OpenMP, 2002) is a standard for writing multithreaded programs. Multithreaded
means that parts of a program are run in parallel. Data exchange between threads is done im-
plicitly by accessing memory. OpenMP has the advantage that it is easy to use for parallelising
loops. Its disadvantage is that it is only usable on shared memory systems. Since Version 9.1, the
Intel compilers also support Cluster OpenMP, an OpenMP version that uses message passing.

The OpenMP standard can be downloaded from http://www.openmp.org. OpenMP has
to be supported by the compiler. At the moment, there are two freely available (Intel only for
non-commercial purposes) OpenMP-capable compilers: Intel icc/ifort and GNU gcc/gfortran.

3.1.2 Intel Fortran

The Intel compilers icc (C/C++) and ifort (Fortran 77/90/95) are available from Intel’s website,
http://www.intel.com. After registration, you will receive an e-mail with license code
and download link. After downloading, ifort is installed by

tar xfz l_fc_c_9.1.036.tar.gz

cd l_fc_c_9.1.036

./install.sh

Default installation directory is /opt/intel/fce/9.1.036. Add the binary directory (in
the example /opt/intel/fce/9.1.036/bin) to your PATH. It may also be necessary

15
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to add /opt/intel/fce/9.1.036/lib to your dynamic linker search path. How to do
this depends on your Linux distribution, usually it is done by editing /etc/ld.so.conf and
running ldconfig.

The Intel compilers come with extensive documentation. A few common options are shown here:

• -L/path: Search path for linking against libraries,

• -xW: enable optimisations for SSE2-capable CPUs (Pentium 4, newer AMD CPUs),

• -xP: enable optimisations for SSE3-capable CPUs (newer Pentium 4s, Intel Core and
newer). Although some AMD CPUs support SSE3, programs compiled with -xP will not
run on these due to processor detection,

• -O3: full optimisations,

• -openmp: enable OpenMP.

There are many other options, especially concerning optimisations. Feel free to experiment with
these. In my experience, they offer little performance benefit with decent code, especially if most
computations are done by library routines (BLAS, LAPACK).

Since version 9.1, the Intel compilers also support Cluster OpenMP, a version of OpenMP for
distributed memory systems. Unfortunately, it is not freely available at this time.

3.1.3 gfortran

gfortran is a rewrite of the GNU g77 Fortran compiler. It is available from http://gcc.

gnu.org/wiki/GFortran. It supports Fortran 77, 90 and 95. The newest versions also
have support for OpenMP. If you’re lucky, your distribution may already come with a current
version of gfortran. If not, you should look for prebuilt binary packages, or you may have to
compile gfortran from source. The gfortran website will give further assistance.

Common compile options are:

• -L/path: Search path for linking against libraries,

• -O3: full optimisations,

• -fopenmp: enable OpenMP.

http://gcc.gnu.org/wiki/GFortran
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3.2 BLAS & LAPACK

BLAS (basic linear algebra software) and LAPACK (linear algebra package) are standards for
linear algebra routines. They are widely used and available in optimised versions for various
machines.

3.2.1 Reference BLAS

The reference BLAS (Lawson et al., 1979) is the reference implementation of the BLAS standard.
It is usually slower than machine-optimised versions, but can be used if no optimised libraries
are accessible. It is available from http://www.netlib.org/blas/. Installation is done
by

mkdir BLAS

mv blas.tgz BLAS

cd BLAS

tar xfz blas.tgz

ifort -O3 -c *.f (or whatever compiler/options you want to use)
ar r libblas.a *.o

You can then link against BLAS with -lblas.

3.2.2 Reference LAPACK

The reference LAPACK (Anderson et al., 1999) is the reference implementation of the LAPACK
standard. Its performance is heavily dependent on the underlying BLAS implementation. LA-
PACK is available from http://www.netlib.org/lapack/. Installation is done by

tar xfz lapack.tgz

cd LAPACK

cp INSTALL/make.inc.LINUX make.inc

edit the make.inc file according to the compiler you use. Change BLASLIB to point your
BLAS library. Change LAPACKLIB to liblapack.a. A simple make should then compile
LAPACK. You can now link against LAPACK with -llapack -lblas.

3.2.3 Intel MKL

The Intel MKL (Math Kernel Library) implements (among others functionality, such as FFT) the
BLAS and LAPACK functionality. It is optimised for Intel CPUs. The non-commercial version

http://www.netlib.org/blas/
http://www.netlib.org/lapack/
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of the MKL for Linux is available from Intel’s Website, http://www.intel.com. After
registration, you receive an e-mail with the license code and a download link. After downloading,
the following commands with install the MKL:

tar xfz l_mkl_p_8.1.1.004.tgz

cd l_mkl_p_8.1.1.004

./install.sh

The default installation directory is /opt/intel/mkl/8.1.1. The actual libraries are in the
subdirectories lib/32 (for 32-bit systems), lib/64 (for Itanium systems), and lib/em64t
(for x86-64 systems). Linking against the MKL depends on your architecture, for x86_64 it is
done by -lmkl_lapack -lmkl_em64t -lguide. It may be necessary to add the MKL li-
brary path to the search path for the dynamic linker, for example by editing/etc/ld.so.conf
and running ldconfig.

3.2.4 AMD ACML

The AMD ACML (AMD Core Math Library) is AMD’s optimised version of BLAS and LA-
PACK, and also offers some other functionality (e.g. FFT). It is, after free registration, available
from http://developer.amd.com/acml.jsp. For multi-core or multiprocessor sys-
tems using the gfortran or Intel Fortran compiler, you should use the ACML built with gfortran.
Installation is done by

tar xfz acml-3-5-0-gfortran-64bit.tgz

./install-acml-3-5-0-gfortran-64bit.sh

The default installation directory is /opt/acml3.5.0. The parallelised libraries are located
in the lib/gfortran64_mp subdirectory. They can be linked against with -lacml
-lacml_mv -lgfortran -lgomp.

3.2.5 Goto BLAS

The Goto BLAS (Goto et al., 2006) is a very fast BLAS library, probably the fastest on the
x86 architecture. It is available from http://www.tacc.utexas.edu/resources/

software. Installation is done by

tar xfz GotoBLAS-1.07.tar.gz

cd GotoBLAS

./quickbuild.32bit or ./quickbuild.64bit

The quickbuild script should automatically find the best compiler. After compilation, the library
can be used by linking with -lgoto -lpthread.

http://www.intel.com
http://developer.amd.com/acml.jsp
http://www.tacc.utexas.edu/resources/software
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The Goto BLAS does not come with a LAPACK library. It is possible to build the reference
LAPACK with use of the Goto BLAS library.

tar xfz lapack.tgz

mv LAPACK LAPACK_goto

cd LAPACK_goto

cp INSTALL/make.inc.LINUX make.inc

edit the make.inc file according to the compiler you use. Change LOADOPTS to -lpthread.
Change BLASLIB to point to the Goto BLAS. Change LAPACKLIB to liblapack_goto.a.
A simplemake should then compile LAPACK. Link against this version with-llapack_goto
-lgoto -lpthread.

A LAPACK library built with Goto BLAS is fast and, like Goto BLAS, multithreaded. The num-
ber of threads used can be selected by setting the OMP_NUM_THREADS environment variable to
the desired value.

3.2.6 ATLAS

The ATLAS (automatically tuned linear algebra software, (Whaley et al., 2005)) contains the
BLAS and a subset of LAPACK. It automatically optimises the code for the machine on which it
is compiled. It is available from http://www.netlib.org/atlas/. Installation is done
by

tar xfz atlas3.6.0.tgz

cd ATLAS

make config cc=icc (or whatever C compiler you want to use)

When asked for the options, manually choose icc if you want to use the Intel compiler. Do

make install arch=Linux_HAMMER64SSE2_4 (or whatever your architecture may be).
After compiling you can link against the multihreaded ATLAS with -llapack
-lptf77blas -lptcblas -latlas. Note that the number of threads used by ATLAS is
determined during compilation and cannot be set manually.

3.3 MPI

MPI (message passing interface) is a standard for message passing, the parallelisation method
most commonly used for distributed memory architectures. There are many implementations
of MPI for different system architectures, communication networks, and operating systems.
The MPI standard is defined by the MPI forum and can be found on-line at http://www.
mpi-forum.org/.

http://www.netlib.org/atlas/
http://www.mpi-forum.org
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3.3.1 Open MPI

Open MPI (Gabriel et al., 2004) emerged from a number of other MPI implementations. The goal
is to create the best MPI library. Open MPI supports a number of network architectures, among
them shared memory, Ethernet, Myrinet, and Infiniband. Detailed information on the installation
and configuration can be found on the Open MPI website, http://www.open-mpi.org/.
Only short descriptions can be given here. After downloading, do:

bzip2 -d openmpi-1.1.1.tar.bz2

tar xf openmpi-1.1.1.tar

cd openmpi-1.1.1

./configure --prefix=/opt (or wherever you want Open MPI to be placed)
make all install

You can then compile MPI programs with mpicc, mpic++, and mpif90. Using these com-
mands automatically links against the required MPI libraries. Programs are started with the
mpirun command.

mpirun --hostfile hosts -np 2 ./program

The hostfile should contain the nodes, one node per file. For multiprocessor nodes, you may
want to add slots=number of processors. Don’t due this if you use multithreaded programs,
use OMP_NUM_THREADS instead. You can also directly specify execution hosts by --host

n01,n02,... .

3.3.2 MPICH

MPICH (Gropp et al., 1996a,b) is a popular implementation of the MPI standard. More infor-
mation, software packages and installation instructions can be found at http://www-unix.
mcs.anl.gov/mpi/mpich2/. MPICH comes with an excellent installation guide.

3.3.3 MVAPICH

MVAPICH (Liu et al., 2004) is an MPICH-based MPI implementation for Infiniband networks.
It is available from http://nowlab.cse.ohio-state.edu/projects/mpi-iba/.
Installation is done in the following way:

tar xfz mvapich2-0.9.5.tar.gz

cd mvapich2-0.9.5

./configure --enable-threads=multiple

make

After installation, you can compile your applications with mpicc, mpic++ and mpif90.

http://www.open-mpi.org/
http://www-unix
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
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3.4 BLACS

BLACS (Dongarra et al., 1995) are the basic linear algebra communication subprograms. They
are used as communication layer by ScaLAPACK. BLACS itself makes use of PVM (parallel
virtual machine) or MPI. Here, only the MPI version is discussed.

BLACS is available from http://www.netlib.org/blacs/. Make sure that you also
download the patch for MPIBLACS. Installation is then done by

tar xfz mpiblacs.tgz

tar xfz mpiblacs-patch03.tgz

cd BLACS

cp BMAKES/Bmake.MPI-LINUX Bmake.inc

Edit the Bmake.inc file. Set BTOPdir to the correct path, add the lib prefix to the library
names, and fill in the correct parameters for the MPI library you want to use. For ifort, INTFACE
has to be changed to -DAdd_. When using an MPI library that follows the MPI2-standard (such
as Open MPI), TRANSCOMM has to be set to -DUseMpi2. You may also need to change the
compiler-related parameters. If everything is filled in correctly, you can start the compilation
with

make mpi

If you get compile errors, it may be necessary to add symbolic links to MPI include files in the
BLACS SRC/MPI/INTERNAL directory.

3.5 ScaLAPACK

ScaLAPACK (Blackford et al., 1997) is a library for linear algebra on distributed memory archi-
tectures. It implements routines from the BLAS and LAPACK standards. ScaLAPACK makes
it possible to distribute matrices over the whole memory of a distributed memory machine, and
use routines similar to the standard BLAS and LAPACK routines on them.

ScaLAPACK is available from http://www.netlib.org/scalapack/. After down-
loading, follow these steps for installation:

tar xfz scalapack-1.7.4.tgz

cd scalapack-1.7.4

Edit the SLmake.inc file. Modify the home, MPI and BLACS statements to point to the right
directories and libraries. Change the compiler parameters according to your compiler. For ifort,
CDEFS has to be changed to -DAdd_. You also need to specify which BLAS library to use,
preferably an optimised BLAS. A simple

http://www.netlib.org/blacs/
http://www.netlib.org/scalapack/
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make

should then compile ScaLAPACK. Linking against ScaLAPACK also involves linking against
BLACS, BLAS, possibly LAPACK, and MPI. When using Open MPI and Goto BLAS, the fol-
lowing library statements are required:

-lscalapack -lblacsF77init_MPI-LINUX-0 -lblacs_MPI-LINUX-0

-lblacsF77init_MPI-LINUX-0 -llapack -lgoto -lguide -lpthread

ScaLAPACK programs are run like MPI programs, usually by starting them with mpirun.



Chapter 4

Performance Analysis

4.1 Timing

Before parallelising a program, we first need to know which parts of a program need the most
computation time. It does not make sense to spend a lot of time and effort parallelising program
parts that contribute only very little to the total runtime.

When timing a program, there are three different time spans to be considered:

• wall time: The time span a “clock on the wall” would measure, which is the time elapsed
between start and completion of the program. This is usually the time to be minimised.

• user time: The actual runtime used by the program. If this is significantly smaller than
the wall time, the program has to wait a lot, for example for computation time allocation
or data from the RAM or (in the worst case) from the harddisk. These are indications for
necessary optimisations. When using more than one CPU, the user time should be higher
than the wall time, indicating that the CPUs work in parallel.

• system time: Time used not by the program itself, but by the operating system, e.g. for
allocating memory or harddisk access. System time should stay low.

Wall, user, and system time can be measure with the Unix command time:

time ./shale

real 3m13.535s

user 3m11.298s

sys 0m1.915s

23



24 CHAPTER 4. PERFORMANCE ANALYSIS

time only measures the total runtime used by the program. For the performance analysis, we
want to know the runtime required by individual parts of a program. There are several program-
ming language and operating system dependent methods for measuring time inside a program.
Both MPI and OpenMP have their own, platform independent functions for time measurement.
MPI_Wtime() and omp_get_wtime() return the wall time in seconds, the difference be-
tween the results of two such function calls yields the runtime elapsed between the two function
calls.

4.2 Profiling

A more advanced method of performance analysis is called profiling. For profiling, the program
has to be built with information for the profiler. This is done with the switch -pg for gfortran
and -p for Intel Fortran.

After compilation, the program has to be run regularly. This program run creates the file
gmon.out required by the profiler gprof. Executing gprof program > prof.txt cre-
ates a text file with the profiling information.

The first item contained in the file is the flat profile. It lists all function/subroutine calls, the time
used for them, the percentage of the total time, and the number of calls, among other information.
The second item is the call tree, a listing of all routines call by the subroutines of the program.

4.3 Measuring Performance

The runtime measurements described above only give an absolute measurement of the compu-
tation time used by the program. It is also interesting to know how efficient these compuations
actually are. The efficiency is the ratio between the actual performance and the theoretical per-
formance of a system.

The floating-point performance of a computer is expressed in FLOPS - floating point operations
per second. The theoretical performance of a superscalar computer is calculated as follows:

Rpeak = ncores ·nFPU · f , (4.1)

where ncore is the number of computing cores of the computer, nFPU is the number of floating-
point units per core, and f is the clock frequency. For a Pentium D 830 (two cores, two FPUs per
core, clock frequency 3 GHz), Rpeak results to 2 ·2 ·3 ·109 FLOPS = 12 GFLOPS (GigaFLOPS).
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The SGI Altix 3700 “Aster” at SARA, Amsterdam is equipped with 416 Itanium 2 CPUs (single-
core) clocked at 1.3 GHz, resulting in an Rpeak of 416 · 4 · 1.3 · 109 FLOPS, or 2.16 TFLOPS
(TeraFLOPS).

There are several methods for measuring performance. For a dense matrix-matrix operation
(such as performed by the DGEMM routine of BLAS), the number of floating-point operations
required (the flop-count) is

n f lop = 2mnk, (4.2)

with m being the number of rows of the first matrix, n being the number of columns of the
second matrix, and k being the number of columns of the first matrix and the number of rows of
the second matrix. The flop count of the DSYRK routine (as used in N = AT A, see chapter 5) is

n f lop = m(m+1)n, (4.3)

with n being the number of rows of A, and m being the number of columns of A and the number
of rows and columns of N.

Performance can then by calculated by R =
n f lop

wall time, and efficency by calculating the ratio
R

Rpeak
.

For Intel CPUs, Intel provides a performance measurement tool called VTUNE. The Linux
version is available free of charge for non-commercial purposes from Intel’s website, http:
//www.intel.com. VTUNE offers the functionality of a profiler, but can also measure the
number of integer and floating point operations during a program call.

Many supercomputers come with integrated counters for measuring performance. These make
it very simple to assess performance. If you are lucky to have access to such a machine, the
system’s documentation should contain information about performance measurement.

Please note that the goal of parallelisation and optimisation is not to maximise the efficiency, but
to minimise the runtime required for a program. Sometimes, one algorithm may be less efficient
than another, but also require a smaller number of floating point operations, resulting in a shorter
runtime.





Chapter 5

SHALE - a program for spherical
harmonic analysis

5.1 Spherical harmonic analysis

Spherical harmonic analysis (SHA) is Fourier analysis on the sphere. Spherical harmonics are
the most popular base functions used for data analysis on the sphere. Due to the almost spher-
ical shape of planets, spherical harmonics are a natural choice of base function for global data
analysis. They are used in many fields such as geophysics, physics, and geodesy.

SHALE, the program described here, uses disturbing potential values in discrete points to com-
pute a spherical harmonic presentation of the earth’s gravity potential:

V =
GM
R

nmax

Â
n=0

n

Â
m=0

((c̄n,m cos(ml )+ s̄n,m sin(ml )) P̄n,m (cosJ)) , (5.1)

where GM is the geocentric gravitational constant, R is the earth radius, n is the spherical har-
monic degree, m is the spherical harmonic order, l is the longitude and J the colatitude (polar
distance) of a point on the sphere, the P̄n,m are the normalised associated Legendre functions of
the first kind, and c̄n,m and s̄n,m are the unknown spherical harmonic coefficients which we want
to estimate. A problem of maximum degree nmax has

u = n2
max +2 ·nmax +1 (5.2)

unknown coefficients.

By partially deriving equation 5.1 after the unknowns, we get the entries for the design matrix A
that links observations i and unknowns c̄n,m, s̄n,m:

27
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a
c̄n,m
i =

GM
R

cos(mli) P̄n,m (cosJi) , (5.3)

a
s̄n,m
i =

GM
R

sin(mli) P̄n,m (cosJi) . (5.4)

With the design matrix A and the observation vector y, we can compute the normal equation
matrix N and the right-hand-side vector b:

N = AT A, (5.5)

b = AT y. (5.6)

The estimated coefficients are then obtained by computing

x̂ = N−1b. (5.7)

Equation 5.1 holds only for points on the sphere with radius R. For points outside the sphere, the
potential is

V =
GM
R

nmax

Â
n=0

n

Â
m=0

(
(c̄n,m cos(ml )+ s̄n,m sin(ml )) P̄n,m (cosJ)

(
R
r

)n+1
)

, (5.8)

where r is the radius of the point. The partial derivatives are then

a
c̄n,m
i =

GM
R

(
R
ri

)n+1

cos(mli) P̄n,m (cosJi) , (5.9)

a
s̄n,m
i =

GM
R

(
R
ri

)n+1

sin(mli) P̄n,m (cosJi) , (5.10)

the estimation of the unknown coefficients is done as described in equations 5.5 to 5.7.
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5.2 Direct method

5.2.1 Description

The “direct method” for estimating the unknown gravity field coefficients is implementing equa-
tions 5.5 to 5.7. The inversion of the normal equation matrix N is usually replaced by a decom-
position of N and solving for the unknown coefficients.

The advantage of this method is its simplicity, and that the inverse N−1 can be formed to get error
estimates. It is also easy to expand with other techniques such as regularisation for stabilising
the equation system, and variance component estimation for weighting observation groups with
different accuracies.

The big disadvantage of the direct method is the memory requirement. The normal equation
matrix N, which is of the size u×u for u unknown parameters, has to be kept in memory. The
design matrix A is even larger - it is of size n×u for n observations and u unknown parameters.
Table 5.1 shows the resulting matrix sizes for some typical maximum degrees nmax and 100,000
observations.

nmax u size of N size of A
20 441 1.5 MB 336.5 MB
50 2601 51.6 MB 1.9 GB

100 10201 793.9 MB 7.6 GB
200 40401 12.2 GB 30.1 GB
300 90601 61.2 GB 67.5 GB

Table 5.1: Number of unknowns and matrix sizes depending on nmax, for 100,000 observations

The design matrix A does not have to be kept in memory. Is is possible to build A for only a part
of the observations, do the multiplication and add to N:

N =
n j

Â
j=1

AT
j A j, (5.11)

but with the disadvantage that A has to be built several times if, for example, residuals are to be
calculated:

ê = y−Ax̂. (5.12)

It is possible to compute A j for only one observation at a time. This should be avoided, though,
as the matrix multiplication AT

j A j for an A j of only one line is very inefficient.
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Besides the memory requirement, another disadvantage of the direct method is the time-consuming
dense matrix multiplication N = AT A.

5.2.2 Program structure

The structure of SHALE is shown in figure 5.1. The three computation-intensive tasks are
shaded. The linewise build of A is done by a loop and the routine build_a_line. The matrix
multiplication N = AT A is done using the DSYRK routine of BLAS, b = AT y is done using
DGEMV. The solving of the linear equation systems is done by LAPACK’s DPOSV routine.

Figure 5.1: Structure of SHALE for direct method

The structure of SHALE as shown here has been implemented in SHALE V0.1 (for observations
on the sphere as in eq. 5.1) and in SHALE V0.2 (for observations on and outside the sphere, eq.
5.8).

5.2.3 Program analysis

In the program structure (figure 5.1) three parts were highlighted as computationally intensive.
In SHALE V0.3, timing was added to these parts. Time measurement is done using OpenMP’s
omp_get_wtime() function.
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When being run, SHALE may produce the following output:

build A [s] : 1.693

build N [s] : 20.268

build b [s] : 0.072

solving [s] : 1.303

info : 0

total runtime [s]: 23.457

This shows that most of the computation time is required for the matrix multiplication N =

AT A. Some computation time is also required setting up A and solving the linear equation
system. Depending on the number of observations and unknowns, the numbers will change, but
the general picture will stay the same.

5.2.4 Parallelisation with OpenMP

The performance analysis has shown three areas which can be parallelised to speed up the pro-
gram: setup of design matrix A, matrix multiplication N = AT A, and solving the linear equation
system. SHALE V0.4 is parallelised in this way.

The matrix multiplication is done using the DSYRK routine of BLAS. With a multithreaded
BLAS library (such as GotoBLAS or MKL), increasing the number of threads on a multiproces-
sor system should speed up the multiplication.

The number of threads is set to two with
export OMP_NUM_THREADS=2 if BASH is used and
setenv OMP_NUM_THREADS 2 in the case of C-Shell.

A new program run yields the following result:

build A [s] : 1.677

build N [s]: 10.894

build b [s]: 0.071

solving [s] : 0.883

info : 0

total runtime [s]: 13.646

Not only the time for the matrix multiplication, but also the time required for solving the equation
system has been reduced. This is due to the fact that a LAPACK making use of a multithreaded
BLAS library will also run faster on more processors.

Parallelising the setup of A requires a little more effort. Unparallelised, it looks like this:
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do i=1,nobs

read(1,*) long, lat, rad, value

y(i) = value

long = long/rho

lat = lat/rho

call build_a_line(A,i,nobs,nmax,u,long,lat,rad,latold,pnm,rearth)

latold = lat

end do

This loop can be parallelised quite easily, as setup of the individual lines of A can be done
independently. Reading in the observations is moved out of the loop, the coordinates of the
points are also read into vectors. This makes it possible to execute the loop in parallel:

!$OMP PARALLEL DO

do i=1,nobs

call build_a_line(A,i,nobs,nmax,u,long(i),lat(i),rad(i),latold,

pnm,rearth)

latold = lat(i)

end do

!$OMP END PARALLEL DO

The !$OMP PARALLEL DO pragma indicates that the following do loop can be executed in
parallel. But to our disappointment, a program parallelised in this way does not produce valid
results. There are two reasons for this:

• Each thread needs its own private copy of the variable latold

• Each thread needs its own private array of Legendre functions pnm

Making a variable private to a thread is done by adding a PRIVATE statement to the PARALLEL
pragma. This way, latold can be made private. pnm is slightly more complicated, as this is a
dynamically allocated array. It can also be declared as private in a parallel block, but then has to
be allocated by each thread. This results in the following code for the parallelised loop:

!$OMP PARALLEL PRIVATE(latold,pnm)

allocate(pnm(0:nmax,0:nmax))

latold = 1.6d0

!$OMP DO

do i=1,nobs

call build_a_line(A,i,nobs,nmax,u,long(i),lat(i),rad(i),latold,

pnm,rearth)
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latold = lat(i)

end do

!$OMP END DO

deallocate(pnm)

!$OMP END PARALLEL

A run with the new program yields the desired result:

build A [s] : 1.277

Unfortunately, parallelisation did not result in a speedup close to 100%. This is due to the rather
small workload. With larger problems, the resulting speedup will also be higher.

When parallelising loops, you have to make sure that loop iterations are independent from each
other. A loop like

do i=1,n

a(i) = b(i)*a(i-1)

end do

cannot be parallelised. When calling subroutines inside parallelised loops, you also have to be
sure that subroutine calls are independent from each other. Especially subroutines using the
SAVE parameter for variables are dangerous.

Distribution of the loops over the threads is done by the operating system. The distribution is
load-balanced, so a CPU busy with other tasks will get less loop iterations than an otherwise idle
CPU.

To assess the quality of the parallelisation, a number of computations were done on a dual
Opteron 280 system (two cores per CPU, 2.4 GHz), using the Goto BLAS 1.0.7 and the reference
LAPACK as linear algebra libraries, for a problem of nmax = 50 and n = 16,200 observations.
Figure 5.2 shows the resulting runtimes for the multiplication N = AT A (DSYRK), the solving
of Nx = b (DPOSV), and the total program runtime. Figure 5.3 shows the resulting performance
and efficiency of the DSYRK routine, computed according to equation 4.3. Even with this small
problem, the runtime scales almost linearly, with DSYRK efficiency around 90%. This result
showcases the efficiency of the Goto BLAS on this architecture.

5.2.5 Parallelisation with MPI and ScaLAPACK

As could be seen from the previous section, parallelisation with OpenMP is rather easy and
straightforward, if independent loops are to be parallelised. OpenMP (with the exception of
Cluster OpenMP) is limited to shared memory system. This is also true for BLAS and LAPACK,
the two libraries that do the most workload in SHALE.
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Figure 5.2: Runtimes of SHALE V0.4 with nmax = 50 and n = 16,200 observations

Distributed memory systems require the use of message passing methods for communication
between the nodes. The most common message passing library is MPI. ScaLAPACK is a
BLAS/LAPACK library for distributed memory system. ScaLAPACK makes use of BLACS
as communication layer, which in turn makes use of MPI.

ScaLAPACK distributes matrices and vectors in blocks among all nodes taking part in a compu-
tation. How this distribution is actually done and how computations and communication need to
be performed is not important to the user - he only needs to call the ScaLAPACK routines with
the right parameters. ScaLAPACK follows the SPMD (single program - multiple data) approach
of MPI. All processes run the same program. Node-dependent behaviour has to be controlled by
if-statements checking for the process id. Input/Output statements, for example, should only be
done by one process, usually the one with id 0.

Parallelising SHALE with ScaLAPACK involves the following steps:

• initialising the BLACS process grid,

• initialising matrix descriptors and allocating memory accordingly,

• distributed setup of design matrix A,

• call of routines for matrix multiplication and solving the equation system,

• gathering the estimated parameters for output,

• exiting the BLACS process grid.
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Figure 5.3: Performance of SHALE V0.4 with nmax = 50 and n = 16,200 observations

Initialising the BLACS process grid is done by

call blacs_pinfo(iam,nprocs)

call blacs_get( -1, 0, ictxt )

call blacs_gridinit(ictxt,’R’,nprocs,1)

The variable iam contains the process id, nprocs the total number of processes. The ’R’ in
blacs_gridinit with a process row size equal to the number of processors and a process
column size of 1 defines a row-style process grid, as shown in figure 5.4. Such a grid has
the advantage that vectors are distributed over all processes, and no process receives no vector
elements. It is thus easy to use. The disadvantage is the lower performance compared to grids
where the columns are also distributed (more than one process column).

ScaLAPACK needs a descriptor desc for each matrix. This descriptor contains information
about the distribution of the matrix. Each process also needs to know how many rows and
columns of a matrix are assigned to it, in order to allocate memory accordingly. In SHALE,
local matrix size calculation and descriptor initialisation is done by the subroutine
calc_sizes_descinit.

call blacs_gridinfo(ictxt,nprow,npcol,myrow,mycol)

call calc_sizes_descinit(blocksize,ictxt,myrow,mycol,nprow,npcol,

nobs,u,desca,ra,ca)

...

The distributed setup of A is pretty straightforward. The rows of A are distributed over the
processes in a blockwise fashion, as shown in figure 5.5. Since ScaLAPACK uses a block-cyclic
distribution, it is not that (in the case of two processes) the first process is assigned the first half
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Figure 5.4: Row-style process grid

of the matrix, the second process the other half. Blocks are distributed in a round-robin fashion.

For setting up A, we need to know to which global row index the local row index in the loop
corresponds. This information is provided by ScaLAPACK’s indxl2g function. Except for
also passing the size of the local A matrix, the build_a_line routine for setting up A can
remain unchanged. As we have only one column of processes, each process holds all columns.
The number and ordering of the unknown parameters, and thus the actual computation of one
line of A, remains unchanged. We keep the OpenMP parallelisation for multithreaded program
runs on SMP nodes, which means that idx also has to be private.

!$OMP DO

do i=1,ra

idx=indxl2g(i, blocksize, myrow, 0, nprow)

call build_a_line(A,i,nobs,ra,nmax,u,long(idx),lat(idx),rad(idx),

latold,pnm,rearth)

latold = lat(idx)

end do

!$OMP END DO

Matrix multiplication and linear equation solving is done by replacing the DSYRK, DGEMV,
and DPOSV routines with ScaLAPACK’s PDSYRK, PDGEMV, PDPOSV, and the appropriate
parameters.

call PDSYRK(’L’,’T’,u,nobs,1.0d0,A,1,1,desca,0.0d0,N,1,1,descn)

call PDGEMV(’T’,nobs,u,1.0d0,A,1,1,desca,y,1,1,descy,1,0.0d0,

b,1,1,descb,1)
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Figure 5.5: Matrix distribution over processes

call PDPOSV(’L’,u,1,N,1,1,descn,b,1,1,descb,info)

After solving, the estimated parameters are contained in the distributed vector b. For output, we
need all coefficients inside one vector in process 0. This is done by writing all coefficients to
the proper position in a full vector of estimated coefficients. This vector is then summed up by a
global sum operation, as shown in figure 5.6.

x(:) = 0.0d0

do i=1,rb

idx=indxl2g(i, blocksize, myrow, 0, nprow)

x(idx) = b(i)

end do

call dgsum2d(ictxt,’A’,’ ’,1,u,x,1,-1,-1)

The final step is exiting the BLACS process grid. This is done by

call blacs_gridexit(ictxt)

call blacs_exit(0)

SHALE V0.5 is parallelised as described above. After compilation, we can start the program
with

mpirun -np 1 ./shale

and may get output like this:

build A [s] : 1.739

build N [s] : 24.604
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Figure 5.6: Summation of distributed coefficients

build b [s] : 0.076

solving [s] : 1.811

info : 0

total runtime [s]: 28.291

Another run with

mpirun -np 2 ./shale

yields

build A [s] : 1.765

build N [s] : 13.654

build b [s] : 0.072

solving [s] : 1.667

info : 0

total runtime [s]: 17.266

The problem size in the example is too small for A setup or solving benefiting significantly from
the second CPU. For very small problems and slow interconnects, computation times may even
increase. The matrix multiplication N = AT A is sped up significantly, and may benefit even more
for larger problem sizes.

An example problem with nmax = 100 and n = 64,800 observations was used on an Opteron
Linux cluster (two Opteron 280 dual-core CPUs, clocked at 2.4 GHz, per node) with Infiniband
interconnect. Open MPI 1.1.2, ScaLAPACK 1.7.4, and the Goto BLAS 1.0.7 were used as
software packages. Figure 5.7 shows the resulting runtimes for the multiplication N = AT A
(PDSYRK), the solving of Nx = b (PDPOSV), and the total program runtime. Figure 5.8 shows
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the resulting performance and efficiency of the PDSYRK routine. For 4 and 8 nodes, efficiency
is around 60%. Using more than leads to a significant drop in efficency. Using 32 nodes actually
slows the program down compared to 16 nodes, as too much time is spent communicating. Only
the PDPOSV routine benefits from 32 nodes. Note that especially PDPOSV is sensitive to the
selected ScaLAPACK block size. All results were obtained with a blocksize of 128.
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Figure 5.7: Runtimes of SHALE V0.5 with nmax = 100 and n = 64,800 observations
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Figure 5.8: Performance of SHALE V0.5 with nmax = 100 and n = 64,800 observations
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5.2.6 Some hints

In all computations, you should avoid if -statements, as branching can be quite costly in terms
of computation time. Sometimes, it may be better to compute valuess and not use them at all
rather than using if. Sometimes, it doesn’t matter, as the processor’s branch prediction may guess
correctly (such as with the if in build_a_line, removing it does not make the program faster).
If the outcome is already known at compile time, the compiler should remove the if -statement.

It is often sensible to rearrange loops. In SHALE, the summation of equation 5.8 has been
rearranged, with the loop over the order m outside. This way, the values cosml and sinml have
to be computed only once.

Values that are used several times should be precomputed and stored for later use. Memory is
usually more abundant than computation time, especially if it concerns vectors of only a few
kilobytes. In SHALE, the values of

(
R
r

)n+1
, which are required in each loop of equation 5.8, are

precomputed and stored in a vector. Often this can also be done with sqare root tables, and may
lead to quite dramatic speedups.

In SHALE, the associated Legendre functions P̄n,m are only computed if the latitudeji is different
from the previous latitude ji−1. If the observations are sorted by latitude, this can improve the
computation time considerably. This technique is used in many Fortran programs, often using
Fortran’s SAVE statement, which saves the values of variables between subroutine calls. Be
careful, though: subroutines making use of save and being called by parallel threads will result
in wrong results. Because of this, SHALE saves ji−1 outside of the subroutine actually using it,
with a private copy of the variable for every thread.

5.3 Conjugate gradient method

5.3.1 Description

The previous chapter presented the “direct method” for solving linear equation systems, in this
case for spherical harmonic analysis. As has been said before, its drawbacks are the memory
requirements and the time required for the matrix multiplication N = AT A. To circumvent these
problems, iterative solving methods have been developed, with the “conjugate gradients” proba-
bly being the most popular method. With this method, it is not necessary to fully build N. The
computation only requires vector-vector operations, so very little memory is required.

The conjugate gradient method is presented here not only because it has memory (and possibly
runtime) benefits compared to the direct method, but also because it is much more complicated,
making it more of a challenge to parallelise efficiently.
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Iterative methods can be sped up considerably if some a-priori information about the results is
known. The process of adding a-priori information is called “preconditioning”. The precondi-
tioner is obtained by partly building the normal matrix N. Spherical harmonics are well suited to
preconditioning, as coefficients of different order, as well as the cosine- and sine-coefficients, are
almost independent from each other, leading to normal matrix entries close to zero. This means,
that only blocks of the normal matrix N have to be computed and kept in memory.

The block-diagonal preconditioning matrix Nbd has

nNbd = (nmax +1)2 +2
nmax

Â
n=1

n2 (5.13)

elements, which can be rewritten without the sum:

nNbd = 2

(
nmax (nmax +1)(2nmax +1)

6

)
+(nmax +1)2 (5.14)

This leads to a much smaller memory requirement than for the full normal matrix N. Table 5.2
compares the memory requirements for N and Nbd for various values of nmax. All other arrays
required for the preconditioned conjugate gradient method do not exceed the size of the number
of unknowns, not more than a few megabytes for nmax = 300.

nmax u size of N nNbd size of Nbd

20 441 1.5 MB 6181 48 KB
50 2601 51.6 MB 88451 691 KB

100 10201 793.9 MB 686901 5.2 MB
200 40401 12.2 GB 5413801 41.3 MB
300 90601 61.2 GB 18180701 138.7 MB

Table 5.2: Number of unknowns and matrix sizes depending on nmax

Here, the conjugate gradient method with preconditioning and Schönauer smooting (Schönauer,
2000) is used, as implemented by Ditmar et al. (2003) for gravity field recovery from the GOCE
satellite mission. It is too complex to explain here, but I want to show the equations behind it.
Bold Latin letters correspond to vectors, Greek letters to scalar values:

1. x0 = x̃0 = 0, b0 = b̃0 = AT y, p0 = p̃0 = N−1
bd b0, k = 1

2. ak = Npk = AT Apk

3. ak =
bT

k pk

aT
k pk
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4. xk+1 = xk +akpk

5. bk+1 = bk −akak

6. ek = N−1
bd

(
b̃k −bk+1

)
7. gk = −

bT
k+1ek

(b̃k−bk+1)
T

ek

8. x̃k+1 = xk+1 + gk (x̃k −xk+1)

9. b̃k+1 = bk+1 + gk
(
b̃k −bk+1

)
10. If ‖b̃k+1‖

‖b̃0‖
< e1 and difference (x̃k, x̃k+1) < e2, set x = x̃k+1 and stop

11. p̃k+1 = N−1
bd bk+1

12. bk+1 =
bT

k+1p̃k+1

bT
k p̃k

13. pk+1 = p̃k+1 +bk+1pk

14. k = k +1, go to step (2)

The stopping criteria e1 and e2 are usually set to 10−6.

5.3.2 Program structure

The program structure for SHALE with the preconditoned conjugate gradient method as solver
is shown in figure 5.9. Once again, computationally intensive steps are shaded. These are the
build of the preconditioner and the vector-vector operations in each iteration.

5.3.3 Program analysis

The preconditioned conjugate gradient method as described above has been implemented in
SHALE CG V0.2. A program run with a test data set and nmax = 100 leads to convergence
in the fourth iteration. This is surprising at first, but, with noise-free data in a perfect distribution
and a good preconditioner, not unexplicable.

A profiling run, as described in section 4.2, indicates that more than 90% of the runtime is
required for building the preconditioner N−1

bd , but with very little time required for the blockwise
inversion. Simply using two threads instead of one on a dual-core system (remember that a
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Figure 5.9: Structure of SHALE for preconditioned conjugate gradient method

multithreaded LAPACK library is used) should thus not result in a significantly faster runtime -
and it does not.

About 4% of the runtime are spent for the linewise build of A, the rest in a number of other
routines.

5.3.4 Parallelisation with OpenMP

The performance analysis showed that most of the runtime, at least when the problem converges
quickly, is required for building the matrix Nbd . It thus makes sense to parallelise this part of the
program first.

A closer look at the subroutine build_precon shows that it consists of a series of loops, with
the outermost loop looping over the observations. Parallelising this loop is easy, done in the same
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way as with the linewise build of A for the direct method (5.2.4), making sure that all required
variables are set PRIVATE.

!$OMP PARALLEL PRIVATE(latold,a_row,pnm,idx,offset,m,j,k)

allocate(pnm(0:nmax,0:nmax))

allocate(a_row(u))

latold=1.6d0

!$OMP DO

do i=1,nobs

...

end do

!$OMP END DO

deallocate(a_row)

deallocate(pnm)

!$OMP END PARALLEL

To our dismay, the build of Nbd is not sped up, and problem does not converge any more: the
preconditioner was not built correctly. As all threads may access Nbd at the same time, some
summations are not done correctly.

This problem can be circumvented by giving each thread its own copy of Nbd , and combining
them later.

threadnum = omp_get_thread_num()+1

...

N2(idx,threadnum) = N2(idx,threadnum) + a_row(j)*a_row(k)

...

do j=1,numthreads

do i=1,size_nbd

N(i) = N(i)+N2(i,j)

end do

end do

A program modified in this way (SHALE CG V0.4) still shows no performance improvement on
a Pentium D. On a dual-CPU dual-core Opteron system, going from one to two threads reduces
the computation time slightly. Four threads do not lead to a significant speedup.

The build of Nbd requires the processing of very small vectors with a lot of memory access. As
both cores of the Pentium D use the same bus for memory access, this is the bottleneck. The
Opteron benefits slightly from its independent HyperTransport connection to memory, but the
intensive memory access still limits the performance that can be reached.

In SHALE CG V0.5, the build of the preconditioner has been modified to use blocks of A, as
in equation 5.11. The blocks are distributed over the threads. This is more efficient, and now
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using a second thread actually delivers a performance gain. When using the Goto BLAS, you
may need to set the environment variable GOTO_NUM_THREADS to 1.

!$OMP DO

do j=1,numblocks

do i=1,blocksize

idx = (j-1)*blocksize+i

if(idx.gt.nobs) then

a_block(i,:) = 0.0d0

else

call build_a_line(a_block(1,i),nmax,u,long(idx),lat(idx),

rad(idx),latold,pnm,rearth)

latold = lat(idx)

end if

end do

call dsyrk(’L’,’N’,nmax+1,blocksize,1.0d0,a_block,u,1.0d0,

N2(1,threadnum),nmax+1)

...

Note that a_block has the dimensions u× blocksize, and not blocksize× u. This is due to
Fortran’s column-major array storage (arrays are stored column by column, not line by line as in
C). build_a_line needs only one row of A at a time, which is achieved by making the rows
the columns. This has to be kept in mind when building the product AT A, which has to be done
as A jAT

j . Other methods, such as explicitly passing all elements of one line (a_block(i,:))
or copying a line to the blocked A (a_block(i,:) = a_row) are much slower.

Another profiler run now shows that about 30% of the runtime are required for calling
build_a_line, 25% for dgemm_kernel (the multiplication AT A in building the precondi-
tioner), and 13% in daxpy. The linewise build of A is thus the logical next target for paralleli-
sation. It has already been parallelised in the preconditioner build, and parallelising it inside the
iteration block follows the same method, with individual vectors for each thread, and summation
after the parallel block.

With these modification, the program is sped up by a factor of 1.8 when using the second core
of a Pentium D, with nmax = 100 and 64,800 observations. The speedup should be even better
when processing larger problems.
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5.3.5 Parallelisation with MPI

The direct method was parallelised for distributed memory systems using ScaLAPACK. ScaLA-
PACK was the ideal method, as most of the workload was performed by the BLAS and LAPACK
routines DSYRK and DPOSV.

As could be seen in the previous section, the conjugate gradient method behaves quite differently.
Only small vectors are processed, with most of the runtime being consumed by the linewise setup
of the design matrix A. Using ScaLAPACK would be of little benefit. It is better (and easier) to
use pure MPI for distribution of the computations, as has been done in SHALE CG V0.6.

The MPI parallelisation adresses the same areas as the OpenMP parallelisation in the previous
section: distribution of the linewise setup of A over the nodes. As with the direct method,
the OpenMP parallelisation will be retained, as multithreaded programs usually run faster than
singlethreaded programs. Note that the loop distribution shown here is not load-balanced. For
the program to run efficiently, it has to be made sure that all processes can dedicate an equal
amount of processing power to the problem.

For MPI programs, the header file mpif.h has to be included into the routines. As with BLACS,
MPI first has to be initialised.

include ’mpif.h’

call mpi_init(ierr)

Two more function calls are necessary to get the total number of processes, and the process id
(rank).

call mpi_comm_size(MPI_COMM_WORLD,nprocs,ierr)

call mpi_comm_rank(MPI_COMM_WORLD,myrank,ierr)

At the end of the program, the MPI communication has to be ended:

call mpi_finalize(ierr)

Parallelising the build of the preconditioner is actually quite easy. A process with rank i + 1 is
assigned every ith block. Within one process, the blocks are still distributed by OpenMP (figure
5.10).

!$OMP DO

do j=myrank+1,numblocks,nprocs

Each process then holds its part of Nbd . All these parts have to be summed up to build the full
Nbd , and distributed to all processes. This can be done with one call to mpi_allreduce,
which sums the elements of N2 into N and distributes the results (figure 5.11):

call mpi_allreduce(N2,N,size_nbd,MPI_DOUBLE_PRECISION,MPI_SUM,

MPI_COMM_WORLD,ierr)
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Figure 5.10: Blockwise distribution of A over processes

The blockwise inversion is very fast and done by each process. It would also be possible to give
the full Nbd to only one process (using mpi_reduce), let that process do the inversion, then
distribute the result N−1

bd . Distributing the blocks for inversion among the processes would be
more complicated and would not lead to a significant runtime improvement. It is often beter do
do small computations multiple times (once by each process) than to do it just once and distribute
the results, as MPI communication is rather slow.

The loop over the lines of A in the initialisation step and inside the iterations is parallelised in
the same way. The resulting program performs quite well on an Infiniband-equipped Opteron
cluster. Doing an analysis up to degree 300 with 260,000 observations takes about 30 minutes
on a Pentium D 830. Eight cluster nodes (each equipped with two Opteron 280 CPUs) need only
two and a half minutes.

An interesting effect can be viewed, though, when comparing singlethreaded (one process per
core, OMP_NUM_THREADS set to 1) and multithreaded (one process per node,
OMP_NUM_THREADS set to 4) program runs. With eight nodes, preconditioner build is slightly
faster during the multithreaded program run, while the actual solving is faster during the sin-
glethreaded program run. This effect amplifies for higher node numbers, and with 30 nodes, the
multithreaded program is faster, as the singlethreaded program needs more time for building the
preconditioner than for solving the equation system. Summing up and distributing Nbd over all
processes probably slows down the singlethreaded program, while the multithreaded program
suffers from too small workloads for each thread.

This can be improved by changing the linewise processing of A to blockwise, as with the build
of Nbd (figure 5.10). This has been done in SHALE CG V0.7. Both singlethreaded and mul-
tithreaded runs benefit from this. For 8 nodes, the multithreaded program is now as fast as the
singlethreaded program, and it is faster and scales much better with more than eight nodes. The
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Figure 5.11: Summation and distribution of vector with mpi_allreduce

singlethreaded program is slower with 30 nodes than with 16 nodes. Figure 5.12 shows the time
required for building the preconditioner, solving, and the total runtime, for 1 to 32 nodes. The
problem size was nmax = 300 and n = 259,200 observations. The system used was a Linux
cluster with dual-CPU Opteron 280 nodes (dual-core, 2.4 GHz) and Infiniband interconnect, 4
threads per node were used. The MPI library was Open MPI 1.1.2, with Goto BLAS 1.0.7 and
the reference LAPACK providing the linear algebra routines. The solving scales almost linearly,
while the preconditioner build benefits little from going from 16 to 32 CPUs. This also affects
the total runtime.

5.4 Conclusions

The previous sections showed step-by-step, how two different programs can be parallelised using
OpenMP, MPI, and ScaLAPACK. A number of conclusions can be drawn from this chapter:

• If -statements may or may not slow down the program, try and see. If it doesn’t, keep the
if if it avoids code-recycling.

• It is relatively simple to parallelise loops using OpenMP. Make sure all necessary variables
are listed in the PRIVATE statement.
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Figure 5.12: Runtimes of SHALE CG V0.7 with nmax = 300 and n = 259,200 observations

• Avoid simultaneous memory access to the same location by multiple threads. Give each
thread its own variable, and combine them after the parallel region.

• Make sure each thread has a sufficient workload, otherwise starting/finishing threads will
cost more time than the actual computation.

• Blockwise instead of linewise computations are a very good method for improving the
efficiency of the program, while blocks can be made sufficiently small to avoid memory
problems.

• ScaLAPACK is a good choice for parallelising programs that make extensive use of BLAS
and LAPACK routines.

• When loops are to be distributed, it is usually better to use pure MPI.

• When using message passing, avoid communication as much as possible, especially with
a slow interconnect (Ethernet).

• Multithreaded MPI programs will usually run faster than singlethreaded programs, as less
explicit communication by message passing is required.
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An Introduction to Parallel Programming
Many scientic computations require a considerable amount of computing 
time. This computing time can be reduced by distributing a problem over 
several processors. Multiprocessor computers used to be quite expensive, 
and not everybody had access to them. Since 2005, x86-compatible CPUs 
designed for desktop computers are available with two “cores”, which 
essentially makes them dualprocessor systems. More cores per CPU are to 
follow.
This cheap extra computing power has to be used efciently, which equires 
parallel programming. Parallel programming methods that work on dual-core 
PCs also work on larger shared memory systems, and a program designed 
for a cluster or other type of distributed memory system will also perform on 
a dual-core (or multi-core) PC.
The goal of this tutorial is to give an introduction into all aspects of parallel 
programming that are necessary to write ones own parallel programs. To 
achieve this, it explains 
•  the various existing architectures of parallel computers,
•  the software needed for parallel programming, and how to instal and 

congure it,
•  how to analyse software and nd the points where parallelisation might 

be helpful,
•  how to write parallel programs for shared memory computers using 

OpenMP,
•  how to write parallel programs for or distributed memory computers using 

MPI and ScaLA-PACK.
This tutorial mainly aims at writing parallel programs for solving linear equation 
systems.Hopefully it is also useful to give some help for parallelising programs 
for other applications.
Contents:
1. Introduction
2. System Architectures
3. Software
4. Performance Analysis
5. SHALE - a program for spherical harmonic analysis
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